Using satellite data to track the human footprint in the Amazon Rainforest

CS5100, Spring 2019 Derek Ching Guanzhou Song Yuetian Li

Introduction

- Problem Statement
- Image Processing Techniques
- Feature Prediction Results based on:
 - Decision Tree
 - Random Forest
 - CNN
- Conclusion / Remaining Tasks

Problem Statement

"Every minute, the world loses an area of forest the size of 48 football fields."^[1]

Our Goal

Figuring out which regions of the Amazon Rainforest are deteriorating the fastest.

Problem Statement

- Given **60,000** satellite images. provided by planet.
- Each satellite image contain multiple combinations of

labels.

• TRAIN and PREDICT.

Problem Statement

• Weather Labels

Clear, Cloudy, Partly Cloudy, Haze

Land Labels

Habitation, Bare Ground, Cultivation, Agriculture, Conventional Mine ...

- **Total 28**
- We have a lot of labels !

How we plan to solve it?

- Image Processing
 - Import Labels and Satellite Image Data
 - Applying filtering/removal techniques for Haze
 - Label categorization
 - Color Intensity
 - Image Edge Analysis

• Apply Image Classifier Algorithms for weather and land

Haze Removal

- The dark channel prior is a kind of statistics of the haze-free outdoor images.
- It is based on the idea that most haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.
- Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high quality haze-free image.
 - (Taken from Single image haze removal using dark channel prior)

Label Categorization

- In our previous slide we mentioned the following labels:
 - Weather Labels: Clear, Cloudy, Partly Cloudy, Haze
 - Land Labels: Habitation, Bare Ground, Cultivation, Agriculture, Blow Down, Conventional Mine, Selective Logging, Slash Burn, Artisinal Mine, Blooming, Primary, Water, and None
- Because there are so many land labels, we can simplify the problem if we categorize the land label as Primary, Water, "Other", and None.

Color Intensity Analysis

- JPG is good for providing RGB Analysis
 - Water means lots of blue, forest means lots of green, clouds means lots of white
- TIF is good for Infrared Analysis
 - We can identify features that can't be split through natural light.
 - Differentiation between water and forests.
 - Water index = (Blue Infrared Light) / (Blue + Infrared Light)
 - Forest index = (Infrared Light Red) / (Red + Infrared Light)

Image Edge Detection

- Sobel calculates first order derivatives
 - We see that Sobel has a Sobel X and Sobel Y.
- Laplacian calculates second order derivatives
 - We are essentially taking the derivatives of the first-order derivative Sobel, and adding them together.

$$\Delta \operatorname{src} = \frac{\partial^2 \operatorname{src}}{\partial x^2} + \frac{\partial^2 \operatorname{src}}{\partial y^2}$$

Feature Prediction Results Decision Tree

- A tree-like graph of decisions and their possible consequences.
- Takes a vector of attribute values as input and returns a decision as output.

Feature Prediction Results Decision Tree

- Straightforward, easy to understand.
- White-box. Examples can be explained by boolean logic if its features are observable in the model. (Unlike some black-box models like neural network)

Feature Prediction Results Random Forest

- Upgrading Decision Tree: Constructing multiple decision tree from one dataset by splitting the dataset into different subsets
- In each subset, randomly pick different data and features.

Feature Prediction Results Deep Convolutional Neural Network

- Input layer
- Output layer
- Hidden layers

- Hidden layers
 - Convolutional layers
 - **RELU layer**
 - Pooling layers
 - Fully connected layers
 - Normalization layers

CNN Layers

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	26, 26, 32)	320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	13, 13, 32)	0
conv2d_1 (Conv2D)	(None,	11, 11, 64)	18496
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	5, 5, 64)	0
conv2d_2 (Conv2D)	(None,	3, 3, 64)	36928
flatten (Flatten)	(None,	576)	0
dense (Dense)	(None,	64)	36928
dense_1 (Dense)	(None,	10)	650

What We have

Random Forest

	Precision	recall	F1
none	0.83	0.73	0.77
other	0.85	0.82	0.83
Primary	0.97	0.99	0.98
Water	0.82	0.59	0.69
Ave/Total	0.92	0.89	0.9

Decision Tree

	Precision	recall	F1
none	0.7	0.69	0.7
other	0.8	0.78	0.79
Primary	0.97	0.98	0.98
Water	0.64	0.57	0.61
Ave/Total	0.88	0.87	0.88

Total Accuracy: 0.77

Total Accuracy: 0.69

CNN (basic, 5-layer): Total Accuracy: 0.75

CNN (GoogLeNet): ??? >0.8

CNN(ResNet): ??? >0.8

.....

What's Next

Data Process

- Picture distortion
 - Prevent overfitting
- Edge Detection
 - Extract more data
 - Remove noise

Algorithm

- GoogLeNet
- ResNet
- DenseNet

Thank You !

Reference

- Retrieved May 31 2019, from
 - https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
- Zhu Q, Mai J, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE transactions on image processing, 2015, 24(11): 3522-3533.
- Planet Company website: https://www.planet.com/company/