
Parameter Estimation in Machine Learning

Yuetian Li
li.yuet@northeastern.edu

1 Introduction

Parameter Estimation is perhaps the single most important thing in machine
learning. In general, what a machine learning algorithm is doing is all about
estimating the parameters in a function that can describe a phenomenon.

From traditional algorithms like Linear Regression and Naive Bayes to mod-
ern algorithms like Deep Neural Networks, their essence of trying to do param-
eter estimation remain unchanged.

2 Intuition

To address again, in machine learning, we hypothesize arbitrarily that there
must be a function that well represents how the features of an observation are
related to its label.

However we do not know the parameters that defines the function, thus, we
need to estimate them.

We may take a function as a example:

y = w0 + w1x1 + w2x2 + · · ·+ wnxn

And it may be generalized into matrix form when we have multiple x1 to xn
as:

y = X ·w

Where:

X =

1 x1

1 x2

...
...

1 xm

 =

1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
...

...
...

...
...

1 xm1 xm2 · · · xmn

 w =

w0

w1

...
wn

 y =

y1
y2
...
ym

1

mailto:li.yuet@northeastern.edu

• X is the feature.

– Each line in the matrix is an observation in the data set with n
features.

– There are m lines in the matrix, which indicates there are m obser-
vations in the data set.

– For example, x11 to x1n is the n features for observation x1.

• y is the label.

– For example, y1 is the label for observation x1 with feature x11 to
x1n.

– There are m lines in the matrix, which also indicates that there are
m observations in the data set.

• w is the parameters that we want to estimate.

– Where w stands for weight.

– The w0 here is also called bias, which sometimes denoted as b.

In real world pratices, features and labels are usually given together, so we
may also indicate the data set D as:

D = {X;y} =

x11 x12 x13 · · · x1n y1
x21 x22 x23 · · · x2n y2

...
...

...
...

...
...

xm1 xm2 xm3 · · · xmn ym

And each line is an observation in the data set.
In this case, the goal is to accurately estimate the parameter w that when

we calculate the prediction ŷ with X and w by

ŷ = X ·w

And the resulting ŷ and the true label y could be close enough. If they are
close enough, we can say we are good with the estimation of the parameters w.

2

3 Estimation Methods

So how should we estimate the parameters?
In general, our strategy is to choose the parameter that maximize the like-

lihood between the prediction and the true label, or minimize the loss between
the prediction and the label. We may follow a procedure as:

1. Define a function that represents the likelihood or loss. It is usually called
loss function or objective function.

2. Calculate partial differentiation of the parameter on the loss function to
find the stationary point of the function, which gives us the optimal value
for the parameters.

The key is to define the loss function. Once you have the loss function on
hand, all you need to do is to optimize the loss function with the parameters.

There are two ways to think about defining the loss function, Maximum
Likelihood Estimation (MLE) and Maximum A-Posteriori Estimation (MAP).

Estimating the paramter with MLE is also referred as Frequentist interpre-
tation, and MAP as Bayesian interpretation.

3.1 Least Squares Estimation (LSE)

We may start with Least Squares Estimation (LSE), which is a special form
of Maximum Likelihood Estimation (MLE). We may define the loss function as:

ŵLSE = argmin
w

N∑
i=1

(ŷi − yi)2

= argmin
w

N∑
i=1

(xiwi − yi)2

= argmin
w

(X ·w − y)2

It means choosing the parameter w that minimize (X · w − y)2, or say

minimize
∑N
i=1(xiwi − yi)2, which is denoted by ŵ.

Exercise 3.1.1
Given the function from the Intuition section:

y = w0 + w1x1 + w2x2 + · · ·+ wnxn

Derive least square estimation for parameter w = (w0, w1, · · · , wn).

Solution 3.1.1
We may define a loss function L to represent the loss between ŷ and y:

3

L(w) =
1

2

n∑
i=1

(xiwi − yi)2

=
1

2
(X ·w − y)2

Calculate partial differentiation on w:

∂

∂w
L =

∂

∂w

1

2
(X ·w − y)2

= (XT − 0) · (X ·w − y)

= XT ·X ·w −XT · y
= 0

So at this time:

XT ·X ·w −XT · y = 0

XT ·X ·w = XT · y
w = (XT ·X)−1 ·XT · y

Thus ŵ = (XT · X)−1 · XT · y gives the least square estimation for our
parameter w.

3.2 Maximum Likelihood Estimation (MLE)

In a more general definition, Maximum Likelihood Estimation (MLE) is to
find the parameters that maximum the likelihood between ŷ and y. We may
define the loss function of Maximum Likelihood Estimation (MLE) as:

θ̂MLE = argmax
θ

p(D | θ)

Where:

• θ represent the parameter, that is the same thing as w indicate above.

• D represents the data set.

• p(D | θ) represents the probability on the data set D calculated by the
parameter θ. More specifically, it can be interpreted as p(ŷ | y) where y
is from D and ŷ is calculated by ŷ = X ·w where X is from D and w is
the parameter θ.

• θ̂MLE is the parameter that we find in this way.

4

It means finding the argument θ that maximize p(D | θ).
Note:

You may actually derive MLE into LSE form, as LSE is a special form of
MLE.

Exercise 3.2.1 Normal Distribution
Suppose the likelihood between X and y in the data set obeys Normal Dis-

tribution given as:

p(x | µ, σ) =
1√
2πσ

e−
1

2σ2
(xi−µ)2

Derive maximum likelihood estimation for the parameter µ.

Solution 3.2.1
We may take logarithm of the original function as:

ln p(x | µ, σ) = ln

n∏
i=1

1√
2πσ

e−
1

2σ2
(xi−µ)2

=

n∑
i=1

ln(
1√
2πσ

e−
1

2σ2
(xi−µ)2)

=

n∑
i=1

(ln e−
1

2σ2
(xi−µ)2 − ln

√
2πσ)

=

n∑
i=1

− 1

2σ2
(xi − µ)2 − n ln

√
2π − n lnσ

Calculate partial differentiation on µ:

∂

∂µ

n∑
i=1

− 1

2σ2
(xi − µ)2 − n ln

√
2π − n lnσ = 0

− ∂

∂µ

n∑
i=1

1

2σ2
(xi − µ)2 = 0

n∑
i=1

(xi − µ)2 = 0

n∑
i=1

xi = nµ

µMLE =
1

n

n∑
i=1

xi

Thus µMLE = 1
n

∑n
i=1 xi is the maximum likelihood estimation for param-

eter µ.

5

3.3 Maximum A-Posteriori Estimation (MAP)

Maximum A-Posteriori Estimation (MAP) is another way to look at the
problem. We may define the loss function as:

θ̂MAP = argmax
θ

p(θ | D) = argmax
θ

p(D | θ)p(θ)
p(D)

= argmax
θ

p(D | θ)p(θ)

Where:

• p(D | θ) is the likelihood of paramter θ on data set D, just like what we
have in MLE.

• p(θ) is the conjugate prior probability of paramter θ.

• θ̂MAP is the paramter that we want to estimate.

It means finding the argument θ that maximize p(θ | D) or finding the
argument θ that maximize p(D | θ)p(θ)

In MAP Estimation, we multiply a prior probability of the parameter θ on
the likelihood of D. This is because we are thinking one step further than MLE:
that we are taking the probability of the parameter θ into the consideration.

You may notice that if p(θ) = 1, which means we are not considering the
probability of the paramters θ, MAP becomes identical with MLE.

Exercise 3.3.1 Bernoulli Distribution
Suppose the likelihood between X and y in the data set obeys Bernoulli

Distribution given as:

pBernoulli(x | θ) = θx(1− θ)x

And given Beta Distribution as its conjugate prior:

pBeta(θ | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

Where Γ(n) = (n− 1)! and α and β are constants.
Derive maximum a-posteriori estimation for the parameter θ.

Solution 3.3.1
Multiply Bernoulli function p(x | θ) and its conjugate prior Beta function

p(θ | α, β)

L(θ | X) ∝ p(X | θ) · p(θ | α, β)

= (

N∏
i=1

pBernoulli(xi | θ)) · pBeta(θ | α, β)

6

Calculate log-likelihood for this:

LL(θ | X) = logL(θ | X)

= log((

N∏
i=1

pBernoulli(xi | θ)) · pBeta(θ | α, β))

=

N∑
i=1

log pBernoulli(xi | θ) + log pBeta(θ | α, β)

Calculate partial derivative to find the maximum:

∂

∂θ
LL(θ | X) =

∂

∂θ

N∑
i=1

log pBernoulli(xi | θ) +
∂

∂θ
log pBeta(θ | α, β)

=

N∑
i=1

∂

∂θ
log θxi(1− θ)1−xi +

∂

∂θ
log(

Γ(α+ β)

Γ(α) · Γ(β)
θα−1(1− θ)β−1)

=
1

θ

N∑
i=1

xi −
1

1− θ

N∑
i=1

(1− xi) +
∂

∂θ
log

Γ(α+ β)

Γ(α) · Γ(β)
+

∂

∂θ
log θα−1 +

∂

∂θ
log(1− θ)β−1

=
1

θ

N∑
i=1

xi −
1

1− θ

N∑
i=1

(1− xi) + 0 + (α− 1)
1

θ
+ (β − 1)

1

1− θ

Let ∂
∂θLL(θ | X) = 0:

1

θ

N∑
i=1

xi −
1

1− θ

N∑
i=1

(1− xi) + 0 + (α− 1)
1

θ
+ (β − 1)

1

1− θ
= 0

θ(

N∑
i=1

(1− xi) + (β − 1)) = (1− θ)(
N∑
i=1

xi + (α− 1))

θ(

N∑
i=1

(1− xi) +

N∑
i=1

(xi) + α+ β − 2) =

N∑
i=1

xi + α− 1

(N + α+ β − 2) =

N∑
i=1

xi + α− 1

θ =

∑N
i=1 xi + α− 1

N + α+ β − 2

θ =
Npositive + α− 1

N + α+ β − 2

7

Thus we know:

θ̂MAP =
Npositive + α− 1

N + α+ β − 2

gives us the MAP estimation on data set D, where N is the total number
of observation in the data set, and Npositive is the total number of observation
with positive feature (x = 1) in the data set.

Exercise 3.3.2 Multinomial Distribution
Suppose the likelihood between X and y in the data set obeys Multinomial

Distribution given as:

pMultinomial(x1, x2, · · · , xN | θ1, θ2, · · · , θN) = (

N∏
i=1

θxii)

And given Dirichlet Distribution as its prior:

pDirichlet(θ1, θ2, · · · , θN | α1, α2, · · · , αN) =
Γ(

∑N
i=1 αi)∏N

i=1 Γ(αi)

N∏
j=1

θ
αj−1
j

Where each αi is a constant.
Derive maximum a-posteriori estimation for each parameter θi.

Solution 3.3.2
Multiply likelihood function L and prior function.

L(θ | X) ∝ pMultinomial(x1, x2, · · · , xN | θ1, θ2, · · · , θN) · pDirichlet(θ1, θ2, · · · , θN | α1, α2, · · · , αN)

= (

N∏
i=1

θxii) ·
Γ(

∑N
j=1 αj)∏N

j=1 Γ(αj)

N∏
i=1

θαi−1
i

= Cconst ·
N∏
i=1

θxii · θ
αi−1
i

= Cconst ·
N∏
i=1

θxi+αi−1
i

Calculate the log-likelihood:

LL(θ | X) = log(Cconst ·
N∏
i=1

θxi+αi−1
i)

= Cconst

N∑
i=1

log θxi+αi−1
i

= Cconst

N∑
i=1

(xi + αi − 1) log θi

8

Where we have a constraint of

N∑
i=1

θi = 1

We can see the constant coefficient Cconst does not influence the value of the
log-likelihood function, so we may wipe it out.

Then, we will want to add a Lagrange multiplier λ to impose the constraint
on the log-likelihood:

LL(θ | X) =

N∑
i=1

(xi + αi − 1) log θi − λ(

N∑
i=1

θi − 1)

Calculate partial derivative to find maximum:

∂

∂θi
LL(θ | X) =

∂

∂θi
(

N∑
i=1

(xi + αi − 1) log θi)−
∂

∂θi
(λ(

N∑
i=1

θi − 1))

=
xi + αi − 1

θi
− λ

Let ∂
∂θi
LL(θ | X) = 0:

∂

∂θi
LL =

xi + αi − 1

θi
− λ = 0

θi =
xi + αi − 1

λ

We then may calculate λ with the above constraint

N∑
i=1

θi = 1

N∑
i=1

(
xi + αi − 1

λ
) = 1

∑N
i=1(xi + αi − 1)

λ
= 1

λ =

N∑
i=1

(xi + αi − 1)

Substitute λ, we can get

9

θ̂i =
xi + αi − 1∑N

i=1(xi + αi − 1)

And it is the MAP estimation for each parameter θi.

4 Optimizer

With the above estimation method, we may solve the optimization problem,
and directly calculate the optimal parameters.

However, in many cases of machine learning, we are not directly calculating
the optimal parameters. Instead, we are using some algorithm to approximate
the optimal parameters, instead of calculating them directly. The algorithms
we use here are called Optimizer.

Some of reasons why we are doing this are:

• It costs too much computational resources (including time and space) to
find and calculate the optimal parameters directly.

• It is hard to directly find the optimal parameters out of their expression by
mathematical derivations for some algorithm, like Deep Neural Network.

• More discussions: https://stats.stackexchange.com/questions/278755/
why-use-gradient-descent-for-linear-regression-when-a-closed-

form-math-solution

While using an algorithm to approximate the optimal parameters is simple,
usually approximates well and applies to most machine learning algorithms that
needs to do parameter estimation.

The common algorithms that we use to do the approximation to the optimal
parameters including Stochastic Gradient Descent (SGD) and Adaptive Moment
Estimation (Adam).

4.1 Stochastic Gradient Descent (SGD)

For Stochastic Gradient Descent (SGD), we start form some imperfect pa-
rameters w and update them by:

w = w − η∇L(w) = w − η

n

n∑
i=1

∇Li(w)

Where:

• w is each of our weights in w.

10

https://stats.stackexchange.com/questions/278755/why-use-gradient-descent-for-linear-regression-when-a-closed-form-math-solution
https://stats.stackexchange.com/questions/278755/why-use-gradient-descent-for-linear-regression-when-a-closed-form-math-solution
https://stats.stackexchange.com/questions/278755/why-use-gradient-descent-for-linear-regression-when-a-closed-form-math-solution

• L(w) is our loss function. ∇L(w) is the gradient between our current
prediction and true label.

• η is the step size we go in each iteration. It is also called learning rate.

• n is the number of observation we consider to optimize the parameters in
each iteration.

We may infer that in each iteration, it is trying to approximate a little bit
to the optimal value by shrinking the loss between current prediction and the
true label, and after a number of iterations, we may get to a place where we are
very close to the optimal parameter w∗

The algorithm of SGD is basically running a for-loop with the above update
operation until the loss between our prediction and the true label could small
enough.

A later proposed version of SGD is SGD with momentum (SGDM), which
the update becomes:

∆w = α∆w − η∇L(w)

w = w + ∆w

Where:

• α is a forgetting factor between 0 and 1.

• ∇L(w) is the gradient of w on the loss function.

• η is the step size as we have in original SGD.

By doing this, the optimizer tends to remember the mainstream of the pre-
vious updating directions, and thus less affected by the random special cases in
the data set.

You may see SGD with Momentum is SGD with the influence of the previous
gradients.

4.2 Adaptive Moment Estimation (Adam)

When you are using SGD, you may find that the learning rate η is a constant.
That looks not so smart, since in the beginning of the optimization, you could
be far away from the optimal point and approximating the optimal point with
tiny steps could take too much time.

Thus, optimizer with adaptive learning rate are proposed, in order to accel-
erate the process of approximating the optimal parameters. One of the represen-
tative adaptive optimizers is Adaptive Moment Estimation (Adam). It modifies
the learning rate for each of the parameters in each step of the optimization
process.

The updates in each iteration becomes:

11

w(t+1) = w(t) − η m̂w√
v̂w + ε

Where:

• w(t+1) is the parameter in step t+ 1, w(t) is the parameter in step t.

• η is a constant learning rate that we still keep as we do in SGD.

• ε is a tiny factor preventing division by 0.

• m̂w and v̂w are:

m̂w =
m

(t+1)
w

1− βt+1
1

v̂w =
v
(t+1)
w

1− βt+1
2

• β1 is the forgetting factor for gradients between 0 and 1. When iteration
t goes big, the update in each iteration m̂w becomes small.

• β2 is the forgetting factor for second moments of gradients, or say square
of the gradients between 0 and 1. Similar to β1, when iteration t goes big,
the update in each iteration v̂w becomes small.

• mw and vw is updated by:

m(t+1)
w = β1m

(t)
w + (1− β1)∇wL(t)

v(t+1)
w = β2v

(t)
w + (1− β2)(∇wL(t))2

You may notice Adam is a combination of SGD with Momentum which is
SGD with the influence of the previous gradients, and SGD with the influence
of the second moment (square) of the previous gradients.

Adam is controversy. It looks smarter than doing the SGD and in many cases
accelerate the process of the optimization. However, some researchers claim it
is not helping us on finding the best parameters at all. You may read more on
this topic in the paper The Marginal Value of Adaptive Gradient Methods in
Machine Learning (https://arxiv.org/abs/1705.08292).

12

https://arxiv.org/abs/1705.08292

	Introduction
	Intuition
	Estimation Methods
	Least Squares Estimation (LSE)
	Maximum Likelihood Estimation (MLE)
	Maximum A-Posteriori Estimation (MAP)

	Optimizer
	Stochastic Gradient Descent (SGD)
	Adaptive Moment Estimation (Adam)

